
Individe

A general-purpose mesh networking protocol stack based on IPFS
DRAFT v0.1.0, October 2022

Aleksa Milošević
aleksa@endlesshorizons.xyz

ABSTRACT
Individe is a wireless and wired ad-hoc mesh networking pro-
tocol taking a new approach to mesh networking, by leverag-
ing a peer-to-peer distributed file system. Its main purpose
is to improve the speed and efficiency of mesh networks, pro-
viding the world with simplified technology stack needed for
networking, without tradeoffs. It provides a cheap, easy, fast
and reliable way to set up large and small networks with a
minimum of very little to no infrastructure (depending on
the network size), that can replace the Internet, but also
work in parallel with it, that is resilient to disasters and in-
frastructure failure and completely free for everyone, being
the ideal solution for regions that do not possess the capabil-
ities to create or fund infrastructure. Individe achieves bet-
ter speeds and bandwidth throughput as a mesh network, by
drastically optimizing content retrieval through distributed
content-addressed block storage mechanism, known as In-
terplanetary File System on top of WANET/MANET rout-
ing protocol(s). This paper describes Individe protocol that
fuses IPFS on top of WMNs (wireless mesh networks) and
discusses, the principles that make this fusion of technolo-
gies so robust, the optimizations it introduces and possible
future improvements and directions of the protocol worth
implementing and exploring.

1. INTRODUCTION
To date, we’ve seen several successful general-purpose mesh

networks that route Internet Protocol (IP). Some of the
more notable ones are Guifi and FreiFunk. These projects
have successfully created a network of routers, antennas and
user devices, that work with no configuration and without
the central point of failure. Wireless ad-hoc mesh networks,
proven to work, unfortunately, end up routing everything
back to the Internet. So, even though they’re not central-
ized, they serve just as a more convenient way to provide
Internet access. Without Internet access, mesh networks re-
main useless. Their purpose, although maybe not living to
its potential, is still just routing the traffic, at which they’ve
gotten quite good and robust over the previous years.

Here, we propose an innovative way to employ mesh net-
works to create a completely decentralized networking so-
lution, that would redistribute the Web and create a novel
way of using it. Interplanetary File System (IPFS) has cre-
ated a way to distribute data in a peer-to-peer manner using
content-addressed block storage, which is a quite convenient
way of distributing data in decentralized networks, distribut-
ing it more and more, evenly through time.

This paper introduces Individe, a wireless-first ad hoc

mesh network based fused with a peer-to-peer distributed
content-addressed file system aiming to allow for a fully de-
centralized general-purpose mesh networking protocol that
can work as a standalone solution, with no configuration and
no infrastructure, but also alongside Internet Protocol, mak-
ing it resilient to natural disasters, easy to setup everywhere
on a large or small scale, but not depriving it of Internets
absurd amount of data.

2. BACKGROUND
This section reviews important properties of protocols,

which Individe combines.

2.1 WANET, MANET or WMN
WANET, short for Wireless Ad-Hoc network, MANET,

short for Mobile Ad-Hoc network or WMN, short for Wire-
less Mesh network is a type of decentralized wireless net-
work. The network is considered ad-hoc (as is), since it
does not rely on pre-existing infrastructure and configura-
tion, therefore, not requiring routers, access points, routing
hubs, Internet providers, etc. Instead, each node (user or
device) participates in routing data within the network, by
forwarding data for other nodes. Determination of which
node forwards the data and how it is forwarded is made
dynamically via the so-called routing algorithm or protocol.

Some of the most popular and most mature mesh routing
protocols are Babel, B.A.T.M.A.N, B.A.T.M.A.N Advanced
(B.A.T.M.A.N-adv), BMX6 (and BMX7), OLSR, AODV,
802.11s, HWMP and Static Routing. Each of them employs
different tactics on how to route the data, how to distribute
routing tables, how to recover the routes and the network,
when a certain node is removed, moved or becomes out-of-
range and how to discover malicious and faulty nodes.

In general, routing algorithms and protocols currently avail-
able are designed with a single goal in mind. Routing traffic
to and from the Internet gateway (a mesh node connected
to the Internet), to expand the Internet coverage or to cre-
ate small ad-hoc local wireless networks. Currently, mesh
networks tend to be slower than traditional ones and have
decreased bandwidth, but for their intended purpose, they
are working pretty decently.

2.2 Interplanetary File System (IPFS)
IPFS[11] is a peer-to-peer distributed file system with in-

creased mainstream adoption aspiring to re-decentralize the
way the Internet operates. It is a content-addressable net-
work that combines successful protocols from other peer-
to-peer systems, but also evolves them providing a single

cohesive system. It uses Distributed Hash Tables (DHTs)
as a lookup service and as a routing table to find the stored
data, a BitTorrent-inspired protocol to exchange the data
and a content-addressable way for storing data inspired by
Git’s Merkle DAG.

For a better understanding of IPFS, I suggest reading the
IPFS whitepaper written by Juan Benet[11]. But, here is a
quick rundown of basic principles.

2.2.1 Identities
Nodes on IPFS are identified by a NodeId, the crypto-

graphic hash of a public key, created with S/Kademlia’s
static crypto puzzle. Nodes store their public and private
keys.

IPFS uses self-describing values, hash digest values are
stored in multihash format, which includes a short header
specifying the hash function used and the digest length in
bytes. Example:

<function code><digest length><digest bytes>

2.2.2 Routing
IPFS nodes require a routing system that can find other

peers’ network addresses and peers who can serve partic-
ular objects. IPFS achieves this using a DSHT based on
S/Kademlia and Coral. The size of objects and use pat-
terns of IPFS are similar to Coral[14] and Mainline[13], so
the IPFS DHT makes a distinction for values stored based
on their size. Small values (equal to or less than 1KB) are
stored directly on the DHT. For values larger, the DHT
stores references, which are the NodeIds of peers who can
serve the block. The interface of this DSHT is the following:

2.2.3 Transport
Important to mention is the fact that IPFS operates on

top of libp2p, which is transport agnostic. It can operate on
top of any transport as long as it is implemented.

2.2.4 Block exchange - BitSwap protocol
In IPFS, data distribution happens by exchanging blocks

with peers using a BitTorrent-inspired protocol: BitSwap.
Like BitTorrent, BitSwap peers are looking to acquire a set
of blocks (want list), and have another set of blocks to of-
fer in exchange (have list). Unlike BitTorrent, BitSwap
is not limited to the blocks in one torrent. BitSwap oper-
ates as a persistent marketplace where nodes can acquire
the blocks they need, regardless of what files those blocks
are part of. The blocks could come from completely unre-
lated files in the filesystem. Nodes come together to barter
in the marketplace. This works fine when the distribution
of blocks across nodes is complementary, meaning they have
what the other wants. Often, this will not be the case. In
some cases, nodes must work for their blocks. In the case
that a node has nothing that its peers want (or nothing at
all), it seeks the pieces its peers want, with lower priority
than what the node wants itself. This incentivizes nodes to
cache and disseminate rare pieces, even if they are not inter-
ested in them directly. The protocol must also incentivize
peers to seed even if they do not have anything they want at
the time. Thus, BitSwap credit is used, where nodes track
their balance (in bytes of data sent and received) with other
nodes. Then, peers can decrease their debt by sending to
their peers’ debtors. Let the debt ratio r between a node
and its peer be:

r =
bytes sent

bytes received + 1

Then the sigmoid can be used that is scaled by debt ratio
(Figure 1). Given r, let the probability of sending to a debtor
be:

P (send|r) = 1− 1

1 + exp(6− 3r)

Figure 1: Sigmoid probability function, scaled by a
debt ratio (r).

The debt ratio is a measure of trust: lenient to debts
between nodes that have previously exchanged lots of data
successfully, and merciless to unknown, untrusted nodes.

Also, BitSwap keeps a ledger, storing the history of ex-
change with other nodes. If ledgers between two nodes do
not match, they are reinitialized from scratch, thus prevent-
ing malicious nodes from erasing their dept.

2.2.5 Object Mekle DAG
The DHT and BitSwap allow IPFS to form a massive peer-

to-peer system for storing and distributing blocks quickly
and robustly. On top of these, IPFS builds a Merkle DAG, a
directed acyclic graph where links between objects are cryp-
tographic hashes of the targets embedded in the sources.
Merkle DAGs provide IPFS with many useful properties,
including:

• Content Addressing: all content is uniquely identified
by its multihash checksum, including links.

• Tamper resistance: all content is verified with its check-
sum. If data is tampered with or corrupted, IPFS de-
tects it.

• Deduplication: all objects that hold the exact same
content are equal, and only stored once. This is par-
ticularly useful with index objects, such as git trees
and commits, or common portions of data.

The IPFS Object format is:

type IPFSLink struct {

// name or alias of this link

Name string

// cryptographic hash of target

Hash Multihash

// total size of target

Size int

}

type IPFSObject struct {

// array of links

links []IPFSLink

// opaque content data

data []byte

}

Links can be used to create data structures or to store
larger files, by chunking them into smaller objects.

The objects can be pinned, meaning that their persis-
tence will be guaranteed by saving them in the node’s local
storage.

2.2.6 IPNS - Interplanetary Name System
Since IPFS is content-addressed, addresses change unpre-

dictably as the content is changed. That can be quite chal-
lenging to manage in applications and systems and could
quite negatively impact user experience. Thankfully, that
is easily solved with one of the integral parts of the IPFS,
the Interplanetary Name System (IPNS). It provides static
names for changing content addresses, by using asymmetric
cryptography. Content hash can be signed with a private
key and a record (consisting of signature, public key and
hash) propagated via DHT so that anyone with the hash
of a public key can easily retrieve a record (static hash, i.e.
name) from DHT and verify that it is valid and then easily
resolve it to the actual content address, i.e. hash.

3. DESIGN
All participants of the network are equal and they con-

nect, with no centralized servers and infrastructure, forming
a completely or partially wireless mesh in which they can ef-
ficiently exchange content/data and communicate via IPFS,
without relying on centralized entities to coordinate their
requests. This protocol works standalone, by itself, with no
need for Internet protocol and its infrastructure, but also
can work synergetically with the Internet.

As aforementioned, the main problem of mesh networks is
bandwidth, so all optimization will aim to reduce bandwidth
and increase the speed of IPFS on top of WMN at no cost
to the end user.

IPFS is based on libp2p library that handles networking,
routing and block exchange. Libp2p is extremely extensible,
making it easy to include optimizations and new ways of
transport more suitable for Individe. Most of the changes
and optimizations Individe specifies will be implemented at
the libp2p level or mesh routing algorithm.

3.1 Network and routing
For the initial version of Individe, a proposed routing pro-

tocol is B.A.T.M.A.N Advanced. Even though it underper-
forms in some metrics compared to the other mesh rout-
ing protocols[1][2][3] and underperforms Babel, which from
available data is most performant, batman-adv offers cer-
tain mechanics that are not present out-of-the-box in the
other protocols, such as Network Coding and Multi-Link
optimizations. The initial goal is to rapidly prototype and

establish improvement in speeds and bandwidth in Individe
compared to a mesh using the same routing protocol without
proposed optimizations. Thus, establishing Individe’s per-
formance. Also, batman-adv works at the kernel level (as
a module), as opposed to the userland, thus making packet
processing much cheaper in terms of CPU cycles as each
packet does not need to be read and written to the kernel
and back. This allows for decent and sustainable bandwidth
on low-end and embedded devices and this logic should be
persisted even after the prototype phase.

For future versions, the way to go would be designing the
most performant routing protocol (probably by combining
multiple algorithms, as observed in Babel protocol and Li-
breMesh[5] networks) for the purpose of routing P2P traffic.
Also, redefining physical layer 1 and data link layer 2 should
be considered, to use addressing that would conform to the
one used by IPFS and libp2p, by using PeerIDs, instead
of IP and MAC addresses, thus identifying both nodes and
peers via the same address.

3.2 Node
There are several types of Individe nodes:

• Mesh nodes are defined as roaming participants (de-
vices) that do not have a fixed location most of the
time and participate in routing directly. Examples of
mesh nodes would be smartphones, smart wear, smart
cars (while being driven), etc.

• Router nodes are defined as nodes that are mostly
fixed in space, that participate in routing and can be
relied upon as some kind of ”pseudo-infrastructure”,
since they take part in forming mostly permanent links
and routes. Examples of router nodes would be smart
cars (when stationary and parked), home routers, smart
TVs, smart house appliances, etc.

• Gateway nodes can be any node type that partici-
pates in routing, but also has its IPFS node connected
to the Internet.

• Access nodes can be any node type that participates
in routing, but also offers an endpoint for non-mesh de-
vices, for example via USB, Ethernet cable, Bluetooth
PAN, WiFi access point, etc.

Router and mesh nodes are just concepts, there is not
much difference between them, router nodes are just char-
acterized as nodes that are also connected with wiring or
long-range antennas, acting as a major router in the network
”infrastructure”, by having greater bandwidth throughput,
speed and reliability. Every node in the network is an in-
frastructure of Individe, but analog to the Internet, router
nodes may be considered as an ”actual infrastructure”, since
they shall be most relied upon in everyday non-extreme op-
eration of the network, due to their fixed location, ability
to use wires which are faster than wireless and have longer
range and ability to use antennas to expand the network
range wirelessly when wiring is not an actual or preferred
option.

Each node has an exposed IPFS node and automatically
adds its mesh neighbors and other participants as its IPFS
peers.

Nodes can be connected to the Internet to provide IPFS
with Internet access, but are not required to and can limit

the Internet access of their IPFS node as they wish. The
Internet and other peer-to-peer networks and protocols can
also be routed and bridged to this mesh, but that is not the
subject, nor the scope of Individe protocol.

3.3 Optimizations and principles
The important thing to consider while assessing and talk-

ing about optimizations of Individe is that it is based on
IPFS, a distributed file system and is meant only to route
and exchange blocks of data of such system. Optimizations
are focused on P2P block exchanges between the nodes and
optimizing them as much as possible, to allow for the op-
timal self-contained system, without a need for an Internet
connection to the other IPFS nodes (considering that all the
requested data is contained within the Individe network).

3.3.1 Topology-aware P2P communications
IPFS sounds very attractive on top of the WMNs (wire-

less mesh networks), but unfortunately, it has no regard for
the network topology. It works quite well on top of the In-
ternet protocol, which has an enormous infrastructure and
supports immense bandwidths and speeds. But, when talk-
ing about WMNs, that have significantly smaller capabili-
ties, some optimizations are required in the context of using
IPFS to make Individe decent and more robust. So, besides
the metrics used by mesh routing algorithms at the routing
level, some other metrics should be taken into an account at
the level of IPFS.

Making IPFS understand the topology and how data is
routed, just as making the routing algorithm understand on
top of which topology and what it is routing, would lead
to massive improvements in terms of speed and saving of
airtime, which would in turn increase bandwidth, since more
packets can be sent in the smaller time frame.

These optimizations get really complex and require changes
in libp2p’s transport, IPFS’s peer selection mechanisms and
routing algorithms. In the future, Individe plans to ex-
plore many possible optimizations with regard to topology-
awareness of IPFS and synergy between IPFS and routing
algorithms.

ALMswap.
One of the already proposed strategies is ALMswap[12],

which includes airtime (time needed to transmit a frame over
a specific link or path, considering parameters of the physical
layer and the medium of transfer) cost in IPFS’s sigmoid
function scaled by debt ratio, during the process of peer
selection. The proposed strategy takes HWMP’s (Hybrid
Wireless Mesh Protocol) Airtime Cost Metric (ALM):

ca = [Oca + Op +
Bt

r
] ∗ 1

1− efr

where:

• Oca and Op are constants from the physical layer 1
for the channel access and MAC protocol overhead,
respectively

• Bt is fixed virtual test frame size (in HWMP standard
defined as 8192-bit frame)

• efr is the probability of unsuccessful transmission of a
test frame on the current link at the rate r (given in
MBit/s)

The idea here is to optimize download time and reduce it,
by using the best possible link, therefore increasing thought
and increasing end-user’s experience. Thus, ALMswap com-
bines ALM metrics with BitSwap’s debt ratio sigmoid into
a single function. But, first, the sigmoid function for ALM
must be defined, with a few already existing proposals that
could be considered:

Sigmoid(Ca) = 1
1+ec0−ca

[15]

Sigmoidk(Ca) = 1

1+ek∗(c0−ca) [16]

tanh(Ca) = e(c0−ca)−e(ca−c0)

e(c0−ca)+e(ca−c0)
[17]

Now, transmission probability can be redefined to incor-
porate both ALM and BitSwap’s relevant metrics:

P (send|(r, ca)) = (1− 1
1+e6−3r) ∗ 1

1+ec0−ca
[18]

where:

• r is the node’s debt ratio

• ca is node’s airtime cost

• c0 is the expected value of the node’s airtime cost

It shows the impact of the dept ratio (from IPFS’s BitSwap)
and the ALM metric (from the 802.11s) on the algorithm for
node selection strategy. In certain test scenarios with 5x5
node grid, 15% reduction in download time has been ob-
served[12].

This is one of the simpler and already existing steps to-
ward topology-awareness, further research and optimization
shall be conducted during the development of Individe.

3.3.2 Multi-link Optimizations
One of the optimizations proposed in B.A.T.M.A.N Ad-

vanced is a multi-link optimization[6]. It considers using
multiple network interfaces (wireless or wired). Besides the
obvious, that node can transmit and receive at the same time
with two interfaces or even make multiple transmissions and
get multiple receipts simultaneously with multiple mediums
(antenna or wired connections) it is possible to use interface
alternating and interface bonding.

Interface alternating.
With interface alternating frames are forwarded on a dif-

ferent interface than the one on which the frame was re-
ceived. The purpose of this alternation is to reduce interfer-
ence (we can either send or receive on a WiFi interface at
one time) and balance the network load better on the avail-
able interfaces and eventually increases throughput (Figure
2). Interface alternating is performed by considering the in-
terface where a packet has been received and selecting the
best neighbor of the available outgoing interfaces.

Figure 2: Illustrated mechanism for a chain of nodes
with two interfaces.

Also, interface decision is can be performed considering
the whole mesh network. For example, consider some dual
radio mesh nodes where most nodes have both a 2.4 GHz
and a 5 GHz link to the next hop, except for the connection
between nodes C and D which only has a 2.4 GHz. Based
on the information propagated, A will now choose the 2.4
GHz link first to reach node E. This way, it can avoid using
the same frequency at node C, compared to starting with 5
GHz (Figure 3).

Figure 3: Illustrated interface alteration considering
the whole network

Also, with the network-wide multi-interface optimization,
the multi-interface node can act as a routing splitting point
which can lead to multipath routing. Considering the sce-
nario illustrated (Figure 4) and assuming all paths to be
perfect, node B will route the packets via C if they are com-
ing from F (green path) and route the packets via G if they
are coming from A (red path) for the destination E.

Figure 4: Illustrated interface alteration considering
the whole network

Interface bonding.
When multiple paths on different interfaces with similar

quality are available, frames may be distributed to be sent
over these available paths. The individual frames can be sent
over multiple paths in a round-robin fashion (Figure 5). Us-
ing this technique, the throughput may be increased by the
number of interfaces involved in the bonding. In practical
tests over two WiFi links, more than 50% of throughput gain
has been observed[6].

Figure 5: Illustrated interface alteration considering
the whole network

However, if the paths have different speeds, the through-

put may even decrease due to the slower link slowing down
the whole bonding. Therefore, during the implementation,
physical layer 1 properties should be considered.

Throughput gain.
At the WirelessBattleMesh in Bracciano, the B.A.T.M.A.N

Advanced team performed throughput tests to measure the
gain of the various modes (Figure 6).

Figure 6: The graph shows a throughput gain due
to interface bonding and alternating in a setup of
three B.A.T.M.A.N Advanced nodes, each with two
802.11abg wifi interfaces connected to the mesh net-
work (1x2.4GHz and 1x5.8GHz).

3.3.3 Network Coding Optimizations
Yet another optimization proposed in B.A.T.M.A.N Ad-

vanced, that could be implemented on routing protocol is
Network Coding[4][7]. Network Coding can enable a relay
(a medium or a path between two or more nodes) node to
combine two packets into a single transmission, thus saving
airtime.

The most common and simplest example of network cod-
ing requires a setup of three nodes (Figure 7).

Figure 7: A network coding example illustration,
the repeater R can save one transmission by send-
ing the combined messages of A and B. A and B
can calculate the message they want to receive by
subtracting their own sent message.

Another scenario, in which network coding can help to
save air time, is the X-topology, where two sets of nodes

communicate through the same relay (8). In this example,
Node C and Node D both receive the same network-coded
packet, and they both use the overheard packet (from Node
A and Node B, respectively) to decode the received packet.

Figure 8: A network coding example illustration,
depicting an X-topology.

In certain scenarios (e.g. heavy load traffic intersects at
a relay), network coding can give up to 1.6 times gain in
total throughput. Under less load, the relay might hold
back packets up to 10 ms before forwarding these, as it tries
to get packets to combine.

Figure 9: Graph illustrating the throughput in kb/s
with and without network coding (blue and green
line respectively) as well as the throughput gain (red
line) achieved by network coding on a chain of 3
routers (Figure 7) with clients attached to each end.

Since relays defer packet forwarding to wait for oppor-
tunities to network code packets, a delay of up to 10ms is
introduced at each hop in the network. If the traffic load in-
creases enough, more opportunities to network code should
appear and delay can be decreased by combining packets.

Network coding with IPFS.
Network coding, though being an optimization for routing

towards Internet gateway nodes in the mesh, is much more
powerful considering Individe’s architecture and IPFS usage.
A relay node can combine incoming packets that are being
routed in the same direction and save airtime by combining
them into a single transmission (Figure 10). So, unlike the
abovementioned principles, packets can be grouped even if
some of them will be forwarded further (with more hops)
and maybe grouped into another coded transmission. This
approach on a large scale gets used very much, since Individe
routes traffic in a peer-to-peer manner and many packages
are sent and can be combined if their direction is the same.

Figure 10: Graph illustrating the network coding in
the IPFS. Node A is sending packet a1 to node C
and node B is sending packet b1 to node D. Both
packets are coded into a single transmission a1xb1
and transmitted through relay node R. Node C re-
ceives both packages, takes only the one requested
(a1) and forwards the rest (b1) down the route.

3.3.4 Multicasting blocks
Since Individe’s aim is data distribution, at some point,

when data is distributed enough, it would be safe to as-
sume that multiple neighboring peers in the network would
have one or more same block in their wantlists. The cur-
rent approach is to just send these blocks by n number of
transmissions, with n being a number of neighboring nodes
wanting the same block. In the context of the Internet, this
is completely fine, since bandwidth is extremely huge and
speeds groundbreaking, but in mesh networks, we are look-
ing to save airtime and lower the amount of bandwidth we
are sending. Thus, sending blocks via multicast to multiple
neighbors that want that same block, would save airtime
and bandwidth, since we are transmitting that block in a
single transmission, compared to the multiple transmissions
that would occur when multiple peers want the same block.

3.3.5 Hop reduction due to content-addressed data
distribution

Also, one interesting behavior or principle Individe ob-
serves is that increased data distribution optimizes traffic in
mesh due to the content-addressed nature of IPFS and also,
that a certain portion of content tends to be distributed
where it is needed.

In BitSwap, any block can be retrieved via its hash, it
doesn’t matter if it is a part of some data structure or not,
as long as someone has the hash and it is seeded, it can
be retrieved. Now, this is interesting, since the location of
the block or where it is coming from is irrelevant, it can
be received from anywhere. Currently, with mesh networks
relying on Internet bridges, whatever the action, the packet
is being sent via the shortest path to the node connected
to the Internet. But, in Individe, Internet can be avoided
altogether, if any node closer than the Internet gateway node
has the requested block. With larger use, the probability of
the requested block being closer to the requestor than the
Internet gateway is increased, thus need for the Internet
infrastructure and number of hops is decreased, therefore
network gets self-contained and the speed is increased.

Also, interestingly, a certain amount of content tends to
get distributed where it is needed. It can be observed with
trending content (music videos, movies, TV shows, memes,
social media posts, etc). For example a music video trending
in a certain city or country it gets more distributed within
the region where it is more likely to get consumed, thus

number of hops is likely to get reduced and the network gets
more self-contained, without the need for Internet access.
The same goes for files shared in the workplace, college,
school, etc, content is there, where it is needed. And content
shared within small proximity (e.g. sending pictures and
messages to friends and family) is routed without relying on
the Internet connection.

3.3.6 Hop and traffic reduction due to data dedupli-
cation

The interesting behavior of IPFS’s usage of Merkle DAG
is a possibility for data deduplication. Since data structures
are split into smaller objects, they can be referenced multiple
times in their representation via links, thus if the structure
has repeating sequences, less data is needed to represent it
with blocks. Splitting, i.e. chunking, of data structures is
done by chunking algorithms. The chunking algorithm cur-
rently in use is Rabin-Karp. By optimizing chunking algo-
rithms to increase data deduplication, fewer chunks/blocks
are produced and thus bandwidth is reduced.

Content-defined chunking - CDC.
To increase data deduplication, content-defined chunking

(CDC) algorithms could be used, so that they understand
what data structure is being chunked. CDC increases dedu-
plication, in a way that if the data structure gets changed,
not all of the underlying chunks will get changed, only a
small portion, thus, more chunks get reused, optimistically,
chunks that are already distributed and in circulation, there-
fore decreasing the bandwidth and hops, if older chunks are
decently distributed.

Common bytes as means of increasing deduplication.
Common bytes in terms of data deduplication, here, are

defined as bytes that are reused in the same data format
across different data structures. For example, reusable file
headers, paddings, magic numbers, certain sequences, code
snippets, etc. One example would be the common begining
of an HTML document:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta

name="viewport"

content="width=device-width,

initial-scale=1.0">

<meta

http-equiv="X-UA-Compatible"

content="ie=edge">

This code is present in almost every HTML page on the
Internet in this exact form and the same goes for the HTML
footer. Another example would include the beginning of a
bash scripts:

#!/bin/sh

#!/bin/bash

#!/bin/bin/pwsh

#!/bin/bin/env python3

#!/bin/false...

More examples are configuration files for software, libraries,
and transpilers that often have some exactly the same por-

tions. Also, interpreted, formatting, markup, styling and
some other language types could have the same code snip-
pets.

By identifying reusable chunks across different data of the
same format, a certain number of chunks would be refer-
enced in a lot of distributed data structures. This would
mean that often-used chunks would be distributed all across
the network and when requesting and retrieving content that
references them, for that small portion of data, the network
will be offloaded by that number of bytes, thus reducing
traffic and increasing bandwidth through.

For a simple HTML file header, saving would be 187 bytes,
if no spaces or tabs are used, 194 bytes if tabs are used, 201
bytes if double spaces are used and 215 bytes if four spaces
are used. Let’s take 201 bytes as a reference, if we have one
million nodes in the network and each requests a different
HTML page with the same header (probabilistically very
high) and we consider that each node has that header stored,
savings would be 201 megabytes. And if some node does
not have some common bytes, the number of hops needed
to retrieve that portion of a data structure is reduced from
the actual number of hops to likely just a single hop, since
one of the neighbors will most likely have them.

One of the ways to implement common bytes dedupli-
cation would be defining common bytes in advance and ini-
tially, it would be a way to go and would provide a nice base-
line. But, machine learning could be employed across larger
data sets to identify common bytes and also, end-users,
nodes and routers could opt-in to run resource-restricted
model training to identify new and yet unidentified common
bytes, that can be included in the future. And consider-
ing the sheer amount of data that a single person possesses
and shares nowadays and the amount of data that would
pass through nodes in the network the possibility of training
models with unforeseen common bytes decent for dedupli-
cation is very tempting. Also, training models in the actual
network provides statistics about how often such common
bytes would be used and would be useful while considering
breaking previous deduplications to favor common bytes in
a certain data format.

3.3.7 Reducing amount of traffic using compression
As previously mentioned, decreasing the size of traffic,

i.e. bandwidth is crucial for increasing the bandwidth and
speed of WMN. One of the easiest solutions would be using
lightweight real-time (fast) compression algorithms to com-
press data chunks before routing them. This makes sense,
since after IPFS finishes chunking data structure(s), we are
left with blocks of data larger than a few kilobytes, so dedu-
plication done by IPFS still leaves room for further compres-
sion, because chunker has a restriction with respect to mini-
mal block size. Some more notable and used real-time com-
pression algorithms would be Brotli, Deflate, Zopfli, LZMA,
LZHAM, bzip2, Zlibm LZF, lz4, lzo1x, snappy, quicklz and
even ZSTD by Facebook. Their compression ratios are as
great as ≈ 3 and can compress gigabyte files within a sec-
ond[8]. But without any doubt, ZSTD by Facebook outper-
forms all the others, taking into account speed and compres-
sion ratio (ratio of uncompressed to compressed file). So, for
now, let’s discuss using ZSTD compression on Individe, i.e.
compressing IPFS blocks via libp2p transport.

We could easily get the number of seconds required to
transport a block of data with certain bandwidth:

t =
Bs

BW

where:

• t is a time of exchange or transfer in seconds (s)

• Bs is block size in bytes (B)

• BW is bandwidth in bytes per second (B/s)

We could do the same for the compressed block, including
the time required for compressing and decompressing block:

t =
Bs

Cs
+

Bs

Cr
∗ 1

BW
+

Bs

Ds

where:

• t is a time of exchange or transfer in seconds (s)

• Bs is block size in bytes (B)

• BW is bandwidth in bytes per second (bytes/s)

• Cs is compression speed in bytes per second (B/s)

• Ds is decompression speed in bytes per second (B/s)

• Cr is compression rate Cr = filesize
compressedFilesize

Now, we can create a function that represents the time
difference between sending a compressed block compared to
the uncompressed block.

f(BW,Bs, Bn) = (
Bs

BW
− (

Bs

Cs
+

Bs

Cr ∗BW
+

Bs

Ds
)) ∗Bn

where:

• Bn is the number of blocks transferred, since realis-
tically we won’t be transferring only one block, but
many blocks via IPFS

Now, let’s substitute values Cs, Ds and Cr with ZSTD’s
benchmarks for the highest compression ratio setting:

Cs = 500 MB/s,

Ds = 1660 MB/s,

Cr = 2.884

and take IPFS’s block size at 512 KB:

Bs = 0.512 MB

and for now, remove Bn, and we get hyperbolic, uncom-
pressed to compressed exchange time difference function:

f(BW) =
0.512

BW
− (

0.512

530
+

0.512

2.887 ∗BW
+

0.512

1700
)

Figure 11: Uncompressed to compressed exchange
time difference function

Now, the total bandwidth is reduced by Cr = 2.887 times
and also, there are time improvements. Subtle at greater
speeds and large at smaller speeds. Function becomes neg-
ative, i.e. time difference becomes negative at the speed of
264.086 MB/s, meaning that at that speed, the compressed
exchange becomes slower than the uncompressed, but since
the function is hyperbolic, if we find the limit of the function:

lim
BW→∞

(
0.512

BW
−(

0.512

530
+

0.512

2.887 ∗BW
+

0.512

1700
)) = 0.00126721

we can conclude that a time difference bigger than 126721∗
10−3 seconds is impossible. But, if Bn is plugged in, as it
is increased, although there are even better time improve-
ments, after the function becomes negative at 264.086 MB/s,
time gets worse and worse, since the limit gets multiplied
by the Bn. So, since the idea of the network that every-
one seeds almost all the time, Bn → ∞, therefore Bs also
tends to infinity and transport should stop compression if
the speed exceeds 264.086 MB/s thresholds and just send
the uncompressed block, but realistically it won’t happen
that often. Or some kind of tolerable negative time differ-
ence could be introduced since cables and strong antennas
can achieve such speeds.

Another possible optimization to reduce compression time
to zero for some blocks could be caching mechanism. Smart
or A.I. caching mechanisms could recognize blocks that are
in high demand and cache them in compressed form, fur-
ther reducing the time of exchange and reducing CPU us-
age. Also, applications and services could programmatically
cache compressed blocks, to save on CPU usage and improve
user experience

More in-depth research and analysis could be conducted
in the future to possibly find better algorithms, settings and
calculations to achieve even better bandwidth optimization.

So far, this was all about the optimization at the libp2p’s
streaming, but services and applications could also compress
the content before putting it up on the IPFS and refer-
ence compression used via some form of metadata, produc-
ing even better bandwidth improvements, since IPFS, unlike
libp2p can read all the blocks as a whole, therefore compress
it with respects to the file format and its content.

3.3.8 Comparison to traditional mesh
Now, we can make a comparison between a mesh network

deployment with the existing routing protocol and the one
with Individe. Considering that both networks have a gate-
way to the Internet, we could make some statements:

• number of hops gets reduced over time as the content
is distributed and the network used

• number of hops gets drastically reduced, if the content
is in high demand

• number of hops gets reduced for a small portion of
static content that is highly deduplicated (common
bytes)

• impact of content-defined chunkers is not yet mea-
sured, but potentially significant, in theory saving air-
time

• Individe’s compression on the transport layer makes up
to 2.887 increase in the bandwidth throughput com-
pared to traditional mesh

• impact of network coding and multi-link optimization
is not yet measured, but is potentially significant

• topology-awareness with ALMswap, showed up to 15%
reduction in download times

• Individe can operate completely off-grid with no Inter-
net access and is resistant to Internet outages, since
the applicative layer conforms to the distributed P2P
model

• dynamic data exchange is optimized slightly using com-
pression and topology-awareness, but on longer ranges
still relies on some kind of infrastructure, but com-
pletely avoids Internet on shorter ranges

In total, we cannot measure the exact improvement in
terms of bandwidth and speed of Individe compared to ex-
isting WMN solutions, until the prototype. But, measured
optimizations like compression and topology-awareness al-
ready offer almost 3 times more bandwidth for the same
mesh deployment and drastically improved speeds. All that
with the ability to function completely without an Internet
backbone. More analysis and tests shall be conducted to
establish improvements brought by proposed optimizations.
But, it’s very important to remember that these optimiza-
tions even when measured shall not be considered separately,
since when combined, they actually optimize each other, e.g:

• deduplication and distribution -> increased bandwidth
and better airtime

• compression -> better airtime and increase in band-
width

• better airtime -> more efficient interface alternating
and bonding

• interface alternating and bonding -> increased band-
width

• topology-awareness -> better airtime

• increased bandwidth -> better airtime

A bit crude, but there is a strong relation between airtime,
bandwidth and proposed optimizations, thus, one optimiza-
tion, further optimizes the others and so on.

4. USAGE
Individe, relying on the IPFS, requires applications to fol-

low specific architecture to get the most out of it and to
function properly. This section will outline how applications
can leverage Individe and several different architectures that
applications can use. More generally, Individe will pursue
the following principles and is meant to be used and designed
as follows:

• as a simplistic general-purpose networking stack, im-
plementing only the necessary functions, leaving the
rest to the applicative layer

• as a standalone solution and protocol for general-purpose
networking (with or without some sort of backbone in-
frastructure wired or wireless, depending on the loca-
tion, usage, needs, etc.)

• as a support for Internet backbone or a standalone
solution in regions where it is hard to set up Internet
infrastructure efficiently

4.1 Connecting to Individe
Just using IPFS would be enough to open a gateway to

the Individe mesh, since inevitably one of your peers or your
peers’ peers would be part of the Individe mesh. But to
guarantee the most direct connection to the Individe, if the
user’s device has Individe node, we specify an endpoint that
ensures applications usage of Individe’s IPFS node. Individe
defines individe.local mDNS hostname, which resolves to the
IP address of the user’s Individe node, whether running lo-
cally on the same device or on the LAN. Using HTTP to
query GET /ipfs/info route on that address returns the mul-
tiaddresses required to establish a connection to that Indi-
vide node’s IPFS endpoint and start peering. This endpoint
is designed to allow for the creation of usable production In-
divide nodes. Ideally, Individe node would be integrated into
the device and the endpoint would not be required in this
context, but due to the logistics and cost of getting vendors
to integrate it, just as the problems with early adoption, an
external node presents the best opportunity for connecting
and participating.

4.2 Application architecture
Individe, focuses on IPFS applications and does not guar-

antee Internet connection and DNS resolutions. Therefore,
the only thing that is guaranteed is a connection to the
reachable nodes in the network and working and exposed
IPFS node connected to the other reachable nodes in the
network, meaning that applications need to approach Indi-
vide in specific ways. Also, applications should consider the
underlying mechanics of the Individe and other underlying
protocols, leverage optimizations proposed and try to offload
as much bandwidth as possible of the network.

4.2.1 Content (static data) distribution
Individe forces applications to use IPFS for content and

data storage and exchange mechanisms. Applications can
use pinning services with their IPFS nodes to guarantee data
persistence. Also, the lack of Internet connectivity should
be considered, since not all users could have Internet access,
thus offline and online app modes could be considered or just
as any other currently existing app, it can just not work

without the Internet. Encryption may be applied to sen-
sitive data, IPFS supports object-level encryption, so data
can be encrypted at the lowest level of the IPFS and encryp-
tion can be described at the object level. Also, applications
should always consider compression (for the sake of the net-
work) for static content that is not time-sensitive or if the
time impact is not that great due to the compression.

4.2.2 Static names
Since IPFS is content-addressed, addresses change unpre-

dictably as the content is changed. That can be quite chal-
lenging to manage in applications and systems and could
quite negatively impact user experience. Thankfully, that is
easily solved with one of the integral parts of the IPFS, the
Interplanetary Name System (IPNS)[11]. It provides static
names for changing content addresses, by using asymmetric
cryptography. Content hash can be signed with a private
key and a record (consisting of signature, public key and
hash) propagated via DHT so that anyone with the hash
of a public key can easily retrieve a record (static hash, i.e.
name) from DHT and verify that it is valid and then easily
resolve it to the actual content address, i.e. hash.

Proquint human-readable names.
IPNS produces somewhat unfriendly names for humans,

such as:

/ipns/XLF2ipQ4jD3UdeX5xp1KBgeHRhemUtaA8Vm/.

Of course, such a name is to be expected since it is just
encoded random binary data. To make them more human-
readable, it is possible to use the Proquints[9], identifiers
that are readable, spellable, and pronounceable by humans.
In essence, it encodes binary data into human-readable words,
thus:

this proquint phrase

/ipns/dahih-dolij-sozuk-vosah-luvar-fuluh

will resolve to corresponding

/ipns/KhAwNprxYVxKqpDZ

4.2.3 Dynamic data exchange
The important thing to lay out, which has not yet been

mentioned, is that networking is not only directed towards
content retrieval (static data exchange), rather networking
implies any form of data exchange, including content and
data retrieval, but also real-time communication and dy-
namic data exchange. So far, we discussed only the content
and data retrieval mechanisms. This section outlines and
discusses real-time message exchange in Individe.

Message exchange on Individe is possible but is not as
efficient and scalable as content retrieval without infrastruc-
ture. Individe message exchange and real-time communica-
tion relies on IPFS and libp2p pubsub. It is based on pub-
lish/subscribe model and functions as P2P. Since message
exchange does not usually happen just between nodes and
users on short distances, e.g. in client-server communica-
tion, long-distance P2P communications, etc, it is not more
optimized than current approaches, besides proposed stream
compression, and therefore requires infrastructure (on longer
distances). But, for example, private chats on short dis-
tances do not require infrastructure and would mostly have

direct or relatively short routes that would be used for mes-
sage exchange and communication, just as group chats, ap-
plications like forums, games, etc, on small or a bit longer
distances.

Applications should consider that dynamic data exchange
may not happen instantaneously in the deployments of In-
divide that lack Internet connectivity, but should again con-
sider offline and online app modes and should be aware that
dynamic data exchange on smaller distances is possible even
without the Internet connection.

4.2.4 Servers
Individe allows the creation and usage of servers. Servers

can use any protocol of their choosing, i.e. TCP, UDP,
HTTP, etc, but are encouraged to limit the client-server
communication to a pub-sub, since Individe is optimized for
libp2p and IPFS. But, usage of servers should be employed
only when necessary and it would always be a good idea to
consider serverless architectures if possible, to allow for ap-
plications and services to run even if disconnected from the
global mesh and the Internet.

4.2.5 Centralized databases
Individe allows the creation and usage of centralized databases.

As previously described, servers can be used, therefore, putting
a database behind (within) such a server would be a way to
go for the usage of such databases.

4.2.6 Distributed databases
One very interesting feature that Individe enables through

IPFS are CRDTs[10]. Conflict-free replicated data types,
the data structures or databases that are suitable for being
distributed across the network, may be used in many cases,
to provide applications with data store solutions, without
central servers and databases. One interesting implementa-
tion worth mentioning is OrbitDB.

5. FUTURE
This section discusses future possible ideas, principles and

features worth mentioning.

5.1 Custom mesh routing protocol
As aforementioned, the currently picked routing protocol

(batman-adv) is not that efficient and is chosen because of
its wide range of features that can enable fast prototype de-
velopment for measuring Individe’s performance compared
to the traditional mesh approaches. In the future, the devel-
opment of a custom mesh routing protocol for the Individe
is a must, fusing all the best techniques from its predecessors
and using PeerIDs for addressing, instead of IP and MAC
addresses. It will most likely operate in the kernel.

5.2 Satellites
At the time of writing, Apple has just recently announced

its built-in satellite communication modem in their new Ap-
ple iPhone 14. Also, we have SpaceX with its network of
Starlink satellites. Though the idea of satellite Internet
communications has been around for a while, it is just as
of recently getting mainstream traction. One of the possible
interesting integrations for Individe would be the usage of
satellite communications as a transport mechanism. Since
the whole idea of Individe is based around retrieving as much
data as possible from the nearest sources, it decreases the

amount of data that would go through satellite links, go-
ing first to the wireless and wired points that are near for
most data needs. This principle would theoretically make
data transport via satellite more robust, since only a cer-
tain percentage of data would be routed through satellite
links and would therefore use it less, which is good, since
satellite communication is somewhat slow and would deload
satellites, making them faster when needed.

5.3 Post-quantum cryptography
IPFS and libp2p currently use RSA cryptography. Due

to a recent number of breakthroughs in quantum comput-
ing, many cryptographic algorithms are in danger of being
broken. Thus, it is a good idea to lay out that there are
many post-quantum cryptographic algorithms in existence
and that in case of RSA being broken, it will be easy to
integrate some novel post-quantum cryptography.

6. ACKNOWLEDGMENTS
Individe is the synthesis of many great ideas and sys-

tems. It would be impossible to think about it, if not for
the existence and creation of protocols, ideas and concepts
such as P2P networks, BitTorrent, BitSwap, IPFS, Wire-
less Mesh Networks, mesh routing protocols (B.A.T.M.A.N,
BMX, OLSR, AODV and many more), DHT, etc. There-
fore, special thanks to the brilliant minds whose works, pa-
pers, ideas, concepts, knwoledhe and protocols are men-
tioned in this writing, for their immense contribution to
science. But, one special thanks to Juan Benet, for his re-
markable work on IPFS and for being an inspiration for this
paper and to my career as a software architect and engineer.

7. REFERENCES
[1] D. Murray, M. Dixon and T. Koziniec, ”An

experimental comparison of routing protocols in
multi hop ad hoc networks ”2010 Australasian
Telecommunication Networks and Applications
Conference, 2010, pp. 159-164, doi:
10.1109/ATNAC.2010.5680190.

[2] M. Abolhasan, B. Hagelstein and J. C. . -P. Wang,
”Real-world performance of current proactive
multi-hop mesh protocols” 2009 15th Asia-Pacific
Conference on Communications, 2009, pp. 44-47, doi:
10.1109/APCC.2009.5375690.

[3] Hachtkemper, Manuel & Rademacher, Michael &
Jonas, Karl. (2017). Real-World Performance of
current Mesh Protocols in a small-scale Dual-Radio
Multi-Link Environment.

[4] HundebÃÿll, Martin & Ledet-Pedersen, Jeppe
(2011), Inter-Flow Network Coding for Wireless
Mesh Networks martin. Master Thesis in Networks
and Distributed Systems, Aalborg University

[5] https://libremesh.org/howitworks.html

[6] https://www.open-mesh.org/projects/batman-
adv/wiki/Multi-link-optimize

[7] https://www.open-mesh.org/projects/batman-
adv/wiki/NetworkCoding

[8] Jyrki Alakuijala, Evgenii Kliuchnikov, Zoltan
Szabadka, and Lode Vandevenne, ”Comparison of
Brotli, Deflate, Zopfli, LZMA, LZHAM and Bzip2
Compression Algorithms”, Google, inc.

[9] Wilkerson, Daniel. (2009). A Proposal for Proquints:
Identifiers that are Readable, Spellable, and
Pronounceable., arXiv:0901.4016v2 [cs.SE] 26 Jan
2009

[10] Hector Sanjuan, Samuli Poyhtari, Pedro Teixeira,
Ioannis Psaras. ”Merkle-CRDTs: Merkle-DAGs meet
CRDTs”, arXiv:2004.00107 [cs.NI]

[11] Juan Benet, ”IPFS - Content Addressed, Versioned,
P2P File System (DRAFT 3)”

[12] Guanyu Wu, Liang Qian, Changyi Wang, Lianghui
Ding, and Feng Yang. 2019. A novel cross-layer P2P
mechanism for dynamic wireless mesh networks. In
Proceedings of the 5th International Conference on
Communication and Information Processing (ICCIP
’19). Association for Computing Machinery, New

York, NY, USA, 237âĂŞ241.
https://doi.org/10.1145/3369985.3370018

[13] L. Wang and J. Kangasharju. Measuring large-scale
distributed systems: case of bittorrent mainline dht.
In Peer-to-Peer Computing (P2P), 2013 IEEE
Thirteenth International Conference on, pages
1âĂŞ10. IEEE, 2013.

[14] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing content publication with coral. In
NSDI, volume 4, pages 18âĂŞ18, 2004.

[15] Sbai, M.K., Barakat, C., Choi, J., Hamra, A.A.,
Turletti, T. (2008). Adapting BitTorrent to Wireless
Ad Hoc Networks. In: Coudert, D., Simplot-Ryl, D.,
Stojmenovic, I. (eds) Ad-hoc, Mobile and Wireless
Networks. ADHOC-NOW 2008. Lecture Notes in
Computer Science, vol 5198. Springer, Berlin,
Heidelberg.
https://doi.org/10.1007/978-3-540-85209-4 15

[16] S. M. S. Bari, F. Anwar and M. H. Masud,
”Performance study of hybrid Wireless Mesh Protocol
(HWMP) for IEEE 802.11s WLAN mesh networks,”
2012 International Conference on Computer and
Communication Engineering (ICCCE), 2012, pp.
712-716, doi: 10.1109/ICCCE.2012.6271309.

[17] Michiardi, Pietro & Urvoy-Keller, Guillaume. (2007).
Performance Analysis of Cooperative Content
Distribution in Wireless Ad Hoc Networks. 22 - 29.
10.1109/WONS.2007.340468.

[18] M. Rethfeldt, P. Danielis, B. Konieczek, F. Uster and
D. Timmermann, ”Integration of QoS Parameters
from IEEE 802.11s WLAN Mesh Networks into
Logical P2P Overlays,” 2015 IEEE International
Conference on Computer and Information
Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and
Computing, 2015, pp. 1170-1177, doi:
10.1109/CIT/IUCC/DASC/PICOM.2015.175.

